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Abstract

The growth of biological tissues is described as the volumetric production of mass within tissue elements, considered
as one component potential sites for tissue renewal/resorption at a mesoscopic scale of description. The growth is char-
acterized by a growth transformation gradient, which is accompanied by an additional accommodation transformation,
so that the total transformation gradient defines a compatible global displacement field. The continuous change of the
domain occupied by each tissue element during growth is considered, hence the mechanical balance laws are written,
accounting for the additional terms due to the domain variation. The principle of virtual power is then expressed, con-
sidering that the power of internal forces originates from both volumic and surface potentials. The surface potential is
thought to express configurational forces tied to the interface motion, extent and orientation. The equilibrium equations
of the growing tissue element then follow, associated to surface and line boundary conditions. The writing of the second
principle of thermodynamics for a tissue element continuously receiving matter due to transport phenomena allows to
identify the driving forces linked to growth, and provides the evolution laws for the growth velocity. The large strains
compatibility conditions that characterize the accommodation tensor are further considered as an important aspect of
growth. A first insight into the numerical solutions of the compatibility conditions is given, envisaging the situation of
radial growth.
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Nomenclature

X material point position on the initial configuration
Xg (resp. xg) position field on the growing surface S0g (resp. Sg)
U displacement field
F transformation gradient—Fg growth transformation—Fa growth accommodation
E total lagrangian strain tensor—Ea lagrangian accommodation strain
Dg (resp. Da) growth deformation rate (resp. accommodation rate)

d, dg, da Eulerian volumetric, surface and line growth velocity gradient resp.

~d, ~d
g
, ~d

a
surface total, growth and accommodation deformation rates resp.eE (resp. eE

a
) surface (resp. accommodation) deformation tensor

Jg (resp. Jsg) volume Jacobean (resp. surface Jacobean)
D rate of deformation tensor—d/dt domain derivative
X0g (resp. Xg) initial (resp. actual) tissue element configuration
S0g(Sg) growth surface in the lagrangian (resp. Eulerian) configuration
Ng (resp. ng) normal to the surface S0g (resp. Sg)
Lg :¼ $Sng curvature tensor of the surface Sg
s0g (resp. sg) tangent vector to the contour oS0g in the tangent plane to S0g (resp. oSg)
v0g (resp. vg) normal to the contour oS0g in the tangent plane to S0g (resp. to the contour oSg)
C rate of mass change
Ji diffusion flux for the ith constituent—Uqi

conduction flux for the ith constituent
Mi molecular weight of the ith constituent—

vij
Mi

stoichiometric coefficients
rq global source of mass—Ak chemical affinity—Rk velocity of the kth chemical reaction

lV (resp. lS) volumic (resp. surface) chemical potential—M chemical potential field
wV, wS volumetric and surface density resp.
AS surface growth driving force—CS orientation configurational driving force

F IR; eF IR
;
eeF IR

irreversible volumic, surface and line driving forces for growth resp.
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1. Introduction

One outstanding problem in developmental biology is the understanding of the factors that may pro-
mote the generation of biological form, involving the processes of growth (change of mass), remodeling
(change of properties), and morphogenesis (shape changes), a classification suggested by Taber (1995). It
is clear that these three aspects of the development of a biological structure have tied connections to each
other, and are due to a combination of both genetic and epigenetic factors, such as chemical agents and
mechanical stress and strain. There is a vast literature on this subject, tracing back to Galilei Galileo,
who suggested that the size and forms of animal bones are determined by their function and their weight.
The excellent review by Taber (1995) gives a nice survey of the existing literature, both from theoretical and
experimental point of view.

More recent contributions analyze the problem of growth in terms of the evolution of a growth tensor,
associated to a natural configuration of the living body, which proves convenient to set up an objective con-
stitutive law (Epstein and Maugin, 2000; Rodriguez et al., 1994; Ambrosi and Mollica, 2002; Lubarda and
Hoger, 2002). Taber and Humphrey (2001), although referring to remodeling (microstructural reconfigura-
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tion within the tissue, see Garikipati et al. (2003)), rather describe growth. The further concept of �natural
configurations� has been introduced by Rajagopal (1995) and Rajagopal and Srinivasa (1998) in various
contexts, see also Humphrey and Rajagopal (2002), as an adequate framework in the modeling of growth.

Adopting a slightly different point of view, creation of mass within a solid body may naturally fit within
the framework and objectives of configurational mechanics: mention for instance the �accretive forces�
introduced by Gurtin (1995), who complemented the more classical mechanical forces by configurational
forces, that describe the internal structure of the material. Configurational mechanics also recently irrigated
the field of biomechanics, where the computation of material forces in open systems under growth gives
further insight into the morphological changes of the body, see Kuhl and Steinmann (2004), and the refer-
ences therein.

An alternative route is followed in the present contribution, which analyses the thermomechanics of tis-
sue growth, considering the variation of the domain occupied by the material points when mass is contin-
uously added in both their volume and on their surface. The growth is assumed to occur at the scale of
tissue elements, defined as small regions of space (representative volume elements) at a mesoscopic level
of description, that receive nutrients and chemical species via diffusion processes, from an externally as-
sumed existing reservoir (Ambrosi and Mollica, 2002). The present approach is similar in spirit to the recent
work by Garikipati et al. (2003, 2004), who model the coupling of mass transport and mechanics within the
framework of porous media theory. Accordingly, the sources and fluxes of mass are incorporated into the
various balance laws, adopting the thermodynamics of irreversible and open systems as a natural frame-
work that allows a physically consistent treatment of the coupling between mechanics and mass transport
(Ganghoffer, 2003).

The main issue and originality of the present contribution is to analyze the impact of the domain var-
iation of the tissue element on the balance laws and on the resulting driving forces for growth. Specifically,
contributions due to the surface evolution (due to growth) and the boundary line separating the growing
surface from the non-growing surface shall be highlighted. Note the recent contribution on the difficult
problem of surface growth by Huang (2004), who introduced a new derivative, called the �material accretion
derivative�, that accounts for surface growth, and a coupling function of growth, leading to a consistent
form of the equilibrium equation and to accretive boundary conditions of the growing deformable body.

An outline of the paper is the following: the total potential energy of an evolving structure is written from
the setting up of a volumic term and a surface expression, that represents the surface energy of the growing
germ. The principle of virtual power is obtained from the stationnarity of the total potential energy (Section
3), in Eulerian form. The writing of the second principle of thermodynamics (Section 4) then enables to iden-
tify the driving forces for the growth, some of them being in duality pairing with the surface and line growth
velocities. Since the growth is generally not compatible from kinematic point of view, another additional
strain is needed in order to preserve the integrity of the displacement field. A numerical solution (Section
5) of the kinematic compatibility condition within a large transformation framework is obtained in the case
of a radial growth assumption. Finally (Section 6), a conclusion and some perspectives are given.

The following conventions shall be used in the sequel: vectors are underlined once, and second order ten-
sors twice. The transpose of a vector or a tensor is noted with a superscript ‘‘t’’, thus for instance At is the
transpose (line vector or covector) of the column vector A. The convention of implicit summation of a re-
peated index in any monomial is systematically used. Considering a surface S, part of the boundary of a
volume V, any field A(x) having its domain within the volume V shall have a counterpart (that can be envis-
aged as its trace) on the surface S, using the same variable with a tilde ~A, and a line trace on the edge of S
(oS, when the surface is not closed), noted with a double tilde ~~A. Accordingly, the position vector field x
within the volume V shall have a surface and a line counterpart, noted, respectively ~x and ~~x. The main
advantage of using this last notation is the ability to differentiate fields having their domain distinctly within
a volume, a surface or an edge, respectively. This notation shall be used in a systematic manner in the se-
quel, unless the status of the fields is explicitly stated. The infinitesimal volume, surface and line elements
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shall be noted dx, dr, and dl, respectively; distinctions between volume elements appearing in different
configurations shall be done when necessary. The partial derivative of a field f(x) with respect to the var-
iable x is noted in abbreviated form, viz f;x :¼ of

ox. Considering a second order tensor B, the left divergence of
B is the vector divg B, having the components (Bij,i)j.
2. Kinematics of growth

Adopting the point of view of the growing material as a single phase continuum, in which growth is
envisaged as an increase of mass of the existing particles (and not an increase of the particle number), Amb-
rosi and Mollica (2002), the particles (thought as a population of cells in the case of biological tissues) can
be labeled in any configuration of the body.

Since the number of particles is the same in any configuration, a motion that connects all configurations
can be defined. The initial (Lagrangian) and final (Eulerian) configurations are denoted respectively X0g and
Xg; an intermediate configuration Xig due to growth is further introduced, so that a tangent mapping be-
tween the material point X and its counterpart in Xig (after growth) exists (Rodriguez et al., 1994), thereby
defining the growth transformation tensor Fg (X, t). The natural state of each particle is then defined as the
state reached when cutting the particle and relieving its state of stress while keeping the mass constant; the
natural configuration of the body (at a given time) is then the collection of all particles in their natural states
(Rajagopal, 1995; Rajagopal and Srinivasa, 1998; Humphrey and Rajagopal, 2002). Since the local (at each
material point) change of zero stress state during growth is different from point to point, the growth trans-
formation gradient does not necessarily generate by itself a global compatible displacement field. An addi-
tional deformation is needed to restore the continuity of the global displacement field over the whole body:
this deformation field shall be called the growth accommodation tensor Fa in the sequel. Accordingly, shape
changes of a growing tissue (initially supposed to be in a stress-free state) are due to the addition/removal of
material (the material added may be different from the existing material) and to an additional deformation
needed to accommodate the change of tissue configuration, i.e. shape and volume changes that may other-
wise introduce discontinuities within the body.

The classical multiplicative decomposition (Rodriguez et al., 1994) of the transformation gradient
F ¼ rX x ðX ; tÞ
with X and x the lagrangian end Eulerian positions, respectively, as the product of the growth deformation
gradient tensor Fg and the growth accommodation tensor Fa (reminiscent of large strains plasticity theory)
is then introduced:
F ¼ F
a
� F

g
ð2:1Þ
The transformation gradients Fg, Fa and F define the mappings of the tangent spaces to the configurations
X0g, Xig and Xg, called, respectively T X0g , T Xig , and T Xg , thus keeping within the framework of simple mate-
rials in the sense of Noll (Truesdell and Noll, 1992). Considering the mere kinematic aspect of growth at the
present stage, no further specification is needed. The following lagrangian measures of deformation are
further introduced:

• the total lagrangian strain tensor is defined as
E :¼ 1

2
F t � F � I

� �

• the growth deformation tensor is elaborated as
E
g
:¼ 1

2
F t

g
� F

g
� I

� �



Fig. 1. Transport of the material domain Xt by the velocity field W.
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• the lagrangian accommodation strain Ea is further defined as
E
a
:¼ 1

2
ðF t

a
� F

a
� IÞ
Noting U :¼ x � X the displacement field, the total velocity V ¼ dU
dt induces a variation of the initial

domain occupied by the tissue element under growth. The prescription of the displacement field U is
tantamount to the motion of the material domain with a certain velocity field, allowing the calculation
of the derivative of functions or functionals having their range on this domain (Allaire and Henrot,
2001). Consider first b(x, t) a scalar valued field defined in the Eulerian coordinates; the time derivation fol-
lowing a point or a domain in its own motion, characterized by a velocity W, is elaborated as
db
dt

:¼ ob
ot

þ W � gradðbÞ ð2:2Þ
using the symbol d/dt to denote this specific derivation. The generalization to a derivation of a functional
with respect to a domain Xt having its own motion defined by the velocity fieldW (Fig. 1), consists in writ-
ing the domain derivative of the integral B ¼

R
Xt
bðx; tÞdx (here, b(x, t) represents a volumic density) as
dB
dt

¼
Z

Xt

ob
ot

dxþ
Z
St

bW � ndr ð2:3Þ
with n the outward normal to the boundary St = oXt. The generalization to vectorial functions b(x, t) is
straightforward, since Eqs. (2.2) and (2.3) remain valid.

Note that ifW vanishes on a part of the boundary oXt, only the complementary portion of the boundary
(on which jWj 5 0) needs effectively to be considered in (2.3). This domain derivation coincides with the
material derivative of a volume integral (the volume motion is given by that of the material points) given
by Reynold�s transport theorem (Truesdell and Noll, 1992).
3. Balance laws

In this section, a lagrangian point of view is adopted, so that the energy densities are referred to the
initial configuration occupied by the material points of the solid body. Note that any anisotropy (being
reflected in the form taken by the strain energy density) can be lost during ongoing deformation, thus is
only valid—a priori—in the initial configuration.

The growing solid shall be divided into so-called tissue material elements, considered as the equivalent at
a continuum level of the individual cells within a biological context. Although being heterogeneous, the
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tissue element is supposed to build a physical entity at a mesoscopic scale of description, exchanging work
and matter with the surrounding tissue elements.

Remark 1. This mesoscopic viewpoint proves convenient when dealing with a large population of tissue
elements. Although it does not allow the consideration of the fine details of the tissue evolution (such as in
cellular adhesion process, whereby interfacial processes play a major role (Mefti et al., 2004)), it proves
compatible with a treatment using continuum mechanics (with variants at hands, such as the use of mixture
theory (Rajagopal, 1995) or (Rajagopal and Srinivasa, 1998)).

A tissue element of matter receiving continuously new matter from outside (due to diffusion processes
not being explicitly considered in this contribution) is accordingly considered as the elementary volume
of analysis X0g in the initial configuration (recall that its Eulerian counterpart is noted Xg). During growth,
matter is then added in the bulk of X0g and on the portion S0g (its Eulerian counterpart is noted Sg) of the
surface oX0g (the change of the surface being induced by that of the bulk); accordingly, the domain occu-
pied by the tissue element changes. When growth does not occur on the whole of oX0g, S0g is not a close
surface, thus it has a boundary (Fig. 2), noted oS0g (its Eulerian counterpart is noted oSg), which is not
reduced to the empty space. The normal to the surface S0g (resp. Sg) is noted Ng (resp. ng), the tangent vec-
tor to the contour oS0g in the tangent plane to S0g (resp. oSg) s0g (resp. sg), and the normal to the contour
oS0g in the tangent plane to S0g (resp. to the contour oSg) v0g (resp. vg).

The impact of the domain variation on the balance laws shall be assessed in the sequel, considering the
balance of mass, the momentum conservation equation, and the second principle of thermodynamics. As a
matter of simplification, we shall focus on the case of isothermal growth in this contribution.
3.1. Balance of mass and transport phenomena

Adopting an Eulerian point of view, the mass variation due to the transport phenomena is written as the
following integral
dm
dt

¼
Z

Xg

Cqdxg ð3:1Þ
with q the density in the final configuration, and C the rate of mass variation due to growth and growth
accommodation (a quantity having the dimension of the inverse of time).

Expressing the total mass of the domain Xg as mðXgÞ ¼
R

Xg
qðxÞdx, we get the following expression of the

material derivative:
dm
dt

¼ t
Xg

oq
ot

þr � ðqV Þ
� �

dxg ð3:2Þ
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Fig. 2. Tissue element under growth (Eulerian view).
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with V the domain variation velocity. Since the equalities (3.1) and (3.2) hold true for any subvolume of Xg,
we obtain the following local condition of mass conservation:
oq
ot

þr � ðqV Þ ¼ Cq ð3:3Þ
Assuming that no explicit time dependence occurs, equality (3.3) allows to identify the rate of mass varia-
tion, viz C ¼ 1

qr � ðqV Þ. Furthermore, the divergence of the velocity field is equal to the trace of the rate of
deformation tensor D :¼ 1

2
ðrV þrtV Þ, viz
divV ¼ TrðDÞ ð3:4Þ
By the application of Green�s formula, one immediately obtains
Z
Xg

divV dxg ¼
Z
oXg

eV N drg ð3:5Þ
thus addition (removal) of matter at the surface occurs when the flux expressed by the surface integral is
positive (resp. negative), thus eV N :¼ eV � N > 0 (resp. eV N < 0). A few considerations regarding the balance
of mass in connection with transport phenomena and chemical reactions are in order. Introducing at this
stage the diffusion phenomena leading to creation/resorption of mass, we consider the tissue element as an
open system with r constituents, undergoing chemical reactions. Since the growing tissue element is here
viewed as a single-phase continuum, the different constituents are in fact indistinguishable from each other.

Each constituent (labeled with the index i) satisfies the mass balance equation
_qi þ qidivðvÞ þ divJ i ¼ Uqi þ
Xr

j¼1

tijRj ð3:6Þ
in which v is the barycentric velocity, Ji :¼ qi (vi � v) is a diffusion flux (due to the relative velocity (vi � v) of the
individual particles,Uqi a conduction flux for the ith constituent, andRj the velocity of the chemical reaction for
the jth constituent. The coefficients tij

Mi
are the stoichiometric coefficients, withMi themolecular weight of the ith

constituent. The global mass balance is further obtained by summation of the partial Eq. (3.6):
_q þ qdivðvÞ ¼ Uq þ
Xr

i¼1

Xr

j¼1

tijRj ð3:7Þ
with Uq the total flux of conduction (the summation of the partial Eq. (3.6) cancels the diffusion fluxes). The
chemical origin of the rate of mass variation is given by
C ¼ Uq þ rq ð3:8Þ

with rq ¼

Pr
i¼1

Pr
j¼1tijRj the source of mass.

In the forthcoming paragraph, the balance of momentum for a growing tissue element shall be
expressed.

3.2. Balance of momentum

The principle of virtual power expresses the conservation of momentum in weak form, in the sense of
distribution theory. However, the fundamental problem here is due to the mixing of the time variation
(occurring in the virtual velocities) and the simultaneous domain variation, pointing towards the need
for a non-incremental principle at the outset. The writing of the minimum of the total potential energy
V[Xg] of the tissue element at true equilibrium as the nil derivative of V[Xg] with respect to the (varying)
domain leads to a generalized version of the principle of virtual power accounting for the domain variation.
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Proceeding in this way enables to start from a quantity (the total potential energy, to be elaborated in the
sequel) that involves finite quantities (instead of rates), thus its domain variation can be evaluated without
any possible bias due to the occurrence of rates. In the sequel, the velocities shall be considered as virtual
variations of the corresponding displacements, and the displacements as virtual variations of the associated
positions.

3.2.1. Volumic and surface energies for a growing germ

The total mechanical energy of a growing tissue element is set up from a volumetric density wV(Xg,E) in
the initial configuration, depending upon the total lagrangian strain E, and possibly on the position field Xg,

and a surface density wSðeX g;Ng; eEÞ in X0g [ S0g, depending upon the surface lagrangian strain eE, the nor-
mal Ng to the surface S0g, and possibly on the position field eX g on S0g, in order to account for the heter-
ogeneous nature of growth. We assume that the support (in the mathematical sense) of the density wS

restricts to the sole growing surface S0g, which in physical terms expresses as the assumption that the
surface energy contribution of the (non-growing) surface oX0g/S0g can be neglected.

The selected arguments (as well as the form) of wS reflect the fact that the surface energy contains:

• A contribution arising from the variations of the dimensions of any infinitesimal element of the growing
surface, accounted for by the surface strain tensor eE. Since the material added (or removed) from the
initial surface oX0g may be different from the initial material, a specific constitutive behaviour needs
to be assigned to the surface S0g. The partial derivative of the surface density with respect to eE defines
a surface growth driving force A

s
:¼ wS

;eE that triggers the variation of the surface Sg.

• A contribution arising from the change of configuration of the surface Sg during its growth: the config-
uration is characterized by the surface orientation, defined by the normal Ng, in addition to the amount
of surface created. Recall the transformation rule of surface elements known as Nanson formula
(Truesdell and Noll, 1992) ng ds = JgF

�t ÆNg dS, with Jg :¼ det(F), considering the tangent mapping F
between two configurations (the elements attached to the initial configuration, i.e. the oriented surface
element Ng dS, are noted using capital letters). The partial derivative of the surface energy density with
respect to Ng defines an orientational configuration force Cs :¼ wS

;N conjugated to the change of local
surface orientation see Norris (1998), or Freund (1998).
Remark 2. Several living tissues primarily grow by accretion or resorption of mass, as pointed in Taber
(1995). Tissues or materials such as bones—see e.g. the bio-chemo approach by Silva and Ulm (2002)—
shells, horns or branches fall into this category. Regarding surface growth, we herewith advocate a novel
contribution, due to a specific consideration of the surface behaviour, in terms of surface energy and
equilibrium/boundary conditions. The surface energy clearly plays an important role in growth
phenomena, since growth basically occurs by cell adhesion mechanisms (in the case of bones, growth
and remodeling are due to the relative activity of two specialized cells, named osteoblasts and osteoclasts
(Cowin, 1983)) (Mefti et al., 2004).

Both densities wV and wS are incorporated into the total mechanical energy, expressed first in the initial
configuration X0g, then pushed forward onto the final configuration Xg, viz
E ¼
Z

X0g

wV dX þ
Z
S0g

wS dR ¼
Z

Xg

wVJ�1
g dxg þ

Z
Sg

wSJ�1
sg drg 


Z
Xg

wVjg dxg þ
Z
Sg

wSjsg drg ð3:9Þ
with jg :¼ J�1
g and jsg :¼ J�1

sg the inverses of the volume Jacobian Jg and the surface Jacobian Jsg :¼ dR/drg,
respectively. The surface Jacobian expresses as: Jsg :¼ Jg/(ng ÆFg ÆNg).
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In (3.9), the symbols dxg, drg represent the volume and surface differential elements, respectively. Since
mass is continuously changing, wV is defined as a volumic density—instead of a quantity defined per unit
mass; following the same idea, wS is defined as a quantity per unit surface (the quantity of mass attached to
a surface has no true physical sense), which potentially reflects more than the mere idea of a surface energy
(viewed as a scalar), since the consideration of the normal to the growing surface Sg introduces an addi-
tional orientational dependence. It is clear that the orientation of the surface, together with the amount
of surface created, are variables that characterize the configuration of the interface between neighboring
tissue elements. The present choice of a lagrangian description is tied to the fact that the deformation
due to the accommodation of growth is likely to change the state of anisotropy of the tissue from its state
in the initial configuration. Conversely, it may happen that the growth does not change by itself the state of
anisotropy, if for instance the same material is smoothly accommodated by the tissue. An explicit depen-
dence on the position of both volumic and surface potentials has been introduced, via the position variables
Xg and eX g, respectively, so that the growth is here envisioned as a heterogeneous process occurring in a
uniform material body. Recall that a body is called materially uniform when all its points are made of
the same material (Epstein and Maugin, 2000); the non-homogeneous character of the growth means that
the material points do attain different stages at the same common time (otherwise said, all the material
points do not attain the same state at the same instant). However, if the volume of the tissue element is
small enough, it can be considered as nearly uniform.

In the case of soft tissue such as the arterial wall, diverse constitutive models for the volumetric
energy density wV(Xg,E) have been proposed in the literature, see Holzapfel and Weizsäcker (1998),
Holzapfel et al. (2000) and Holzapfel and Gasser (2001). The novel contribution here is the consider-
ation of the surface energy density term wSðeX g;Ng; eEÞ, the form of which can be built from the two
pseudo-invariants of the right-Cauchy Green tensor C :¼ FT ÆF and the two pseudo-invariants of its sur-

face counterpart eC :¼ eF T

0
� eF

0
(itself being constructed from the curvature tensor of the surface S0g, see

the Appendix 1, viz L0g :¼ $SNg). The surface transformation gradient is here defined in its Lagrangian
format as
eF

0
¼ F � P 0 ¼ F � ðI � Ng � NgÞ
with P0 = I � Ng � Ng the Lagrangian projection operator. These four invariants are defined as the follow-
ing scalar products:
I1 ¼ Ng � C � Ng; I2 ¼ Ng � C2 � Ng; I3 ¼ Ng � eC � Ng; I2 ¼ Ng � eC2 � Ng
The two first pseudo-invariants are deformation measures in the direction of the normal to the growing
surface, while the two last invariants are curvature measures in the same direction. Accordingly, the pro-
posed form of the surface strain energy density will be
wS 
 wSðI1; I2; I3; I4Þ
Note that more general forms of the volumetric and surface energy densities can be obtained from the rep-
resentation theorems in Wang (1971).

The total potential energy of the growing tissue element is then the difference between the total energy
and the work of the external forces Wext:
V ½Xg
 ¼ E � W ext
using a bracket notation to remind that V[Xg] is considered as a functional of the tissue element configu-
ration. We assume that the equilibrium equations of the growing tissue element are obtained from the anni-
hilation of the Gateaux derivative of V[Xg], in the direction of the admissible set of directions ðV ; eV ;

eeV Þ
representing the directions of volumetric, surface and line growth, respectively.
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The work of the external forces is successively expressed in Eulerian and lagrangian format as
W ext :¼
Z

Xg

f0 � uðxÞdxg þ
Z

oXg

t0 � ~uð~xÞdrg þ
Z

oSgt

p0 � ~~uð~~xÞs0g dlg

¼
Z

X0g

f0 � uðX ÞJg dXg þ
Z

oX0g

t0 � ~uðeX ÞJ sg dRg þ
Z

oS0g
p0 � ~~uF � sg dLg ð3:10Þ
with f0 the volumetric body forces, t0 = r Æn the traction vector, product of the Cauchy stress tensor r with
the normal n on the boundary oX, p0 the (scalar valued function) density of line forces (acting on the close
edge oSg), and ðu; ~u; ~~uÞ the triplet of volumetric, surface, and line displacements, respectively. We again refer
the reader to the clarifying picture (Fig. 2). Note that the existence of the stress tensor results from the clas-
sical Cauchy�s tetrahedron argumentation; the traction�s acting on the whole boundary of the solid tissue
element physically reflect the contact forces exerted by the neighboring tissue elements.

In the forthcoming, the variation of the potential energy of the tissue element is evaluated, accounting
for the domain variation due to the growth. Following the previous discussion, the domain variation of any
quantity ( Æ ) is noted equivalently dð�Þ

dX or d
dt in the sequel; a very detailed account of domain derivatives of

volume and surface integrals is given in Petryk and Mroz (1986). Accordingly, the domain variation of
the total energy expresses in Eulerian form as
dE
dt

¼
Z

Xg

jgdwV dxg þ
Z

Xg

wVdðjgÞdxg �
Z

Xg

rX ðjgwVÞ � dU dxg þ
Z

Sg

jgw
Vd eU � ng drg

þ
Z

Sg

jsgdwS drg þ
Z

Sg

wSdðjsgÞdrg þ
Z

Sg

jsgw
SdivSd eU drg ð3:11Þ
identifying the velocity field V to a virtual variation of the displacement U. The virtual variation can in turn
be identified to a virtual velocity; this point of view shall be adopted in the sequel. The three first integrals in
(3.11) account for the volumetric part of the growth, while the last four integrals account for the surface
growth, occurring on Sg. Note that the displacement field tied to the domain variation is zero on the surface
oXgnSg. In order to evaluate the domain variation of the total potential energy, some elements of differen-
tial geometry are needed (and made specifically differential geometry of surfaces), which are given in
Appendix 1.
3.2.2. Equilibrium equations and boundary conditions

In order to set the stage, a decomposition of the kinematics into elements that belong to the tangent
plane to the growing surface Sg, and to its normal shall be performed. The velocity field is being decom-
posed into a tangential and a normal contribution
V ¼ V T þ V N �ng
with VT the tangential part of V, i.e. its projection onto the tangent plane to Sg, and VN :¼ V Æng the—
scalar—normal component of V. The surface deformation gradient is further defined as the projection
of F onto the tangent plane to Sg, viz
eF :¼ F � ðI � ng � ngÞ
Accounting for the dependencies
wV ¼ wVðxg;EÞ;wS ¼ wSð~xg; ng; eEÞ

in the actual configuration, the variations dwV and dwS in (3.11) express as
dwV ¼ wV;E : dE þ wV
;xg

� dxg; dwS ¼ wS
;xg

� d~xg þ wS
;ng

� dng þ wS

;eE : deE ð3:12a; bÞ
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The displacement field is defined from the comparison of the initial and final position fields as:
U ¼ x� X
thus by taking the variation:
dU ¼ dx� dX
By definition of the total transformation gradient F, we have
dx ¼ F � dX
thus giving the variation of the position field vs. the displacement variation
dx ¼ ðI � F �1Þ�1 � dU ð3:13Þ
Using the previous equality, the variation of the volumic density is obtained after some elementary calcu-
lations as
dwV ¼ 1

2
ðwVt

;E þ wV
;EÞ � F t : dF þ wV

;xg
� ðI � F �1Þ�1 � dU ð3:14Þ
Combining the surface divergence theorem recalled in the Appendix 1 with the equalities (A1.1) through
(A1.7) established in Appendix 1 and the above expression (3.14), gives after a lengthy calculation the (vir-
tual) variation of the total mechanical energy of the germ:
dE ¼ �
Z

X
divg

1

2
jðwVt

;E þ wV
;EÞ � F t

� �
� ðI � F �1Þ�1 � dU dxg þ

Z
Sgt

ntg �
1

2
jðwVt

;E þ wV
;EÞ � eF t � ðI � eF �1Þ�1

� d eU drg þ
Z

X
wV

;xg
� ðI � F �1Þ�1 � dU dxg þ

Z
X
rðjwVÞ � dU dxg �

Z
Sgt

jwVd eU � ng drg

þ
Z

Sgt

ðwS
;xg
Þt � ðI � eF �1Þ�1 � d eU drg �

Z
Sgt

divS
1

2
jsðASt þ ASÞ � eF t

� �
� ðI � eF �1Þ�1 � d eU drg

þ
Z

Sgt

ðwS
;nÞ

t � L � P � d eU drg þ
Z

oSgt

1

2
jsðASt þ ASÞ � eeF t

� ðI � eeF �1

Þ�1 � d eeU � et � dlg

�
Z

Sgt

jJ sðF � NgÞ
t � L � P � d eU drg þ

Z
Sgt

½rSðwSÞ
t � d eU drg �
Z

oSgt

wSd eeU � et � dlg
�
Z

Sgt

jJ s½divSðNg � ngÞ

t � d eU drg þ

Z
oSgt

jJ sðNg � ngÞ � d
eeU � et � dlg ð3:15Þ
Proceeding in a similar manner, the variation of the work of external forces acting on the tissue element
(using the Eulerian form of (3.10)) is obtained as
dW ext ¼
Z

Xg

f
0
� dU dxg �

Z
Xg

rX ðf 0
� uÞ � dU dxg þ

Z
Sgt

f
0
� ~ud eU � ng drg þ

Z
oX
t0 � d~udrg

�
Z

Sgt

rSðt0 � ~uÞ
t � d eU drg þ

Z
oSgt

t0 � ~~ud
eeU � etg dlg þ

Z
oSgt

p0d
eeU � sg dlg

�
Z

oSgt

p0
eeU � sL � P � d eeUng dlg �

Z
oSgt

divS½ðp0
eeU � sÞ � sg � sg
 � d

eeU dlg ð3:16Þ
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In (3.16), one has to distinguish the actual displacement u (lower case letters) from its virtual variation
(written with capital letters). The stationnarity condition of the total potential energy V[Xg] at equilibrium

is further exploited: the arbitrariness of the variations ðdU ; d eU ; d eeU Þ—traducing the independence of the
variations of the displacement vector U on the volume, surface and line, respectively—wherein the tangen-
tial and normal variations are mutually independent, then gives the set of mechanical equilibrium equations
(we again refer to Fig. 2 for the definition of the geometrical entities attached to the germ):

(i) Volume equilibrium: The following vectorial equation is obtained
�divg
1

2
jðwVt

;E þ wV
;EÞ � F t

� �
ðI � F �1Þ�1 þ ðI � F �1Þ�1 � wV

;xg
þrX ðjwVÞ ¼ f

0
�rX ðf 0

� uÞ ð3:17Þ
The following surface and line equations are the natural boundary conditions associated to the previous
equilibrium equation:
(ii) Surface boundary condition: the equilibrium is described by the vectorial equation
1
2
j ðwVt

;E þ wV
;EÞ � eF t � ðI � eF �1Þ�1

n o
� jwV � ng þ ðI � eF �1Þ�1 � wS

;xg
� divS

1
2
jsðASt þ ASÞ � eF t

h i
� ðI � eF �1Þ�1

þL � P � wS
;n � jJ s � L � P � ðF � NgÞ þ rSðwSÞ � jJ s½divSðNg � ngÞ
 ¼ ðf0 � ~uÞðI � PÞ � ng þ t0 �rSðt0 � ~uÞ

ð3:18Þ
When deriving the surface boundary condition, only the part of the boundary where growth occurs (Sgt ) has
been considered.
(iii) Line boundary condition: the projection on the direction v gives the following scalar equation
1

2
js ttg � ðw

St

;eE þ wS

;eEÞ � eeF t

� ðI � eeF �1

Þ�1 � tg � wS þ jJ s ttðNg � ngÞ � tg

¼ t0 � ~~u� p0
eeU � sg � L � P � tg � ttg � divS½ðp0

eeU � sgÞ � sg � sg
 ð3:19Þ
Conversely, the projection on the orthogonal direction s gives the scalar boundary equation
jg J s ttgðNg � ngÞ � sg ¼ p0 � p0
eeU � sg � L � P � sg � st � divS½ðp0

eeU � sgÞ � sg � sg
 ð3:20Þ
Note that the methodology of domain variation adopted in the present contribution gives a point of view
equivalent to the one developed in Huang (2004), since the additional surface term due to domain variation
includes both a contribution due to the variation of the actual domain due to domain deformation (due to
growth and growth accommodation) and a second contribution due to mass exchange—through the
boundary Sg—with the surrounding tissue elements. Rewrite indeed the domain derivative of any quantity
B ¼

R
Xt
bðx; tÞdx (here, b(x, t) represents a volumic density) as
dB
dt

¼
Z

X

ob
ot

dxþ
Z

oXnSg
bU � ndr þ

Z
Sg

bUgng dr
The two first terms can be identified to contributions of points that are in one-to-one correspondence with
their homologues on the initial configuration, while the last term on the r.h.s. represents the contribution of
the accretive material particles (on the portion of surface Sg where growth occurs). This brings an expla-
nation of the origin of the material accretion derivative introduced by Huang (2004). According to this,
the previous surface and line boundary conditions can be seen as accretive boundary conditions.
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The virtual power of the internal forces is then identified to the Gateaux derivative of the total mechan-
ical energy of the tissue element E in the direction given by the set of variations, replacing the variations by

the triplet of virtual volumic, surface, and line velocities ðV ; eV ;
eeV Þ:
pi ¼
Z

Xg

divg
1

2
j wVt

;E þ wV
;E

� �
� F t

� �
� ðI � F �1Þ�1 � V dxg �

Z
Sg

ntg �
1

2
jðwVt

;E þ wV
;EÞ � eF t � ðI � eF �1Þ�1 � eV drg

�
Z

Xg

wV
;xg

� ðI � F �1Þ�1 � V dxg �
Z

Xg

rðjwVÞ � V dxg þ
Z

Sg

jwV eV � ng drg

�
Z

Sg

ðwS
;xg
Þt � ðI � eF �1Þ�1

:eV drg þ
Z

Sg

divS
1

2
jsðASt þ ASÞ � eF t

� �
� ðI � eF �1Þ�1 � eV drg

�
Z

Sg

ðwS
;nÞ

t
:L � P � eV drg �

Z
oSg

1

2
jsðASt þ ASÞ � eeF t

� ðI � eeF �1

Þ�1 � eeV � etg � dlg

þ
Z

Sg

j J sðF � NgÞ
t � L � P � eV drg �

Z
Sg

½rSðwSÞ
t � eV g drg þ
Z

Sg

jJ s½divSðNg � ngÞ

t � eV drg

�
Z

oSg

jJ sðNg � ngÞ �
eeV � etg � dlg ð3:21Þ
The virtual power of the external forces is obtained from (3.16) as
pe ¼
Z

Xg

f
0
� V dxg �

Z
Xg

rX ðf 0
� uÞ � V dxg þ

Z
Sg

f
0
� ~veV � ng drg þ

Z
oXg

t0 � ~vdrg

�
Z

Sg

rSðt0 � ~uÞ
t � eV drg þ

Z
oSg

t0 � ~~u
eeV � etg dlg þ

Z
oSg

p0
eeV � sg dlg

�
Z

oSg

p0
eeU � sgL � P � eeV ng dlg �

Z
oSg

divS½ðp0
eeU � sgÞ � sg � sg
 �

eeV dlg ð3:22Þ
The principle of virtual power expresses in the final configuration in a quasi-static situation (the power of
inertial forces is neglected) as
pi þ pe ¼ 0 ð3:23Þ
In the sequel, the power of the internal forces is fully expressed in terms of Eulerian kinematic quantities
(volumetric terms in (3.21) indeed involve lagrangian strain and stress measures). The additive decomposi-
tion of the total deformation rate is then postulated
D :¼ symðLÞ ð3:24Þ
with
L :¼ _F � F �1 ð3:25Þ
the velocity gradient, sum of a growth deformation rate Dg, and an accommodation rate Da:
D ¼ D
g
þ D

a
ð3:26Þ
The assumption behind this decomposition is that the addition of matter occurring within the growing body
is smooth enough so that the resulting accommodation strain can be neglected with respect to the growth
deformation (identified to a smooth growth): it is indeed believed that nature knows the best way to gen-
erate a self-accommodating growth.
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Remark 3. As pointed in Taber (1995), surface growth often develops without generating residual stresses.
Note that volumetric growth is not excluded in cases where the tissue essentially grows by surface accretion
of mass. This shows that growth can occur without developing high residual stresses. The consideration of
two different time scales in Skalak (1981) and Skalak et al. (1982), despite appearing as a kinematical
artifact, might be the correct description (the characteristic relaxation times for growth might be shorter
than the time needed for the return to the elastic equilibrium of the body) of how nature in fact proceeds to
easily accommodate the growth without generating residual stresses. The problem of growth incompat-
ibility shall nevertheless be tackled in the forthcoming Section 5.

The accommodation strain itself is supposed to be purely elastic, described by lagrangian strain tensors,
respectively, the (elastic) volumetric accommodation deformation tensor Ea, and the (elastic) surface
accommodation deformation tensor eE

a
(defined in Section 2). The total lagrangian strain is then
E ¼ F t

g
:E

a
� F

g
þ E

g
ð3:27Þ
Introducing the symmetrical part of the growth velocity gradient:
D
g
:¼ 1

2
ðd

g
þ d t

g
Þ ð3:28Þ
with dg the Eulerian growth velocity gradient, a straightforward analogy with plasticity (Khan and Huang,
1995) gives the relationship
D
g
:¼ F �t

g
:
dE

g

dt
� F �1

g
ð3:29Þ
Equality (3.29) defines the growth part of the deformation rate in (3.26). These preliminaries at hand, the
power of internal forces is next expressed in terms of the Eulerian strain measures introduced the above,
from the virtual variation of the total energy of the tissue element (equality (A2.5) in the Appendix 2):
pi ¼ �
Z

Xg

r : Ddxg �
Z

Xg

jðwV
;X Þ

t � V dxg �
Z

Sg

~r : ~d drg þ
Z

Sg

�
jsðwS

;nÞ
t � L � P � jsðwS

;xÞ
t � ðrSw

SÞt

þ jJ sðF � NgÞ
t � L � P �rs � ½jJ sw

Sðng � NgÞ
t
 þ rsðjswSÞ

�
� eV drg

�
Z

oSg

ð1þ jsÞwS eeV � etg dlg �
Z

oSg

jJ sðng � NgÞ
t � eeV g � etg dlg ð3:30Þ
distinguishing between volumetric, surface and line terms successively in the r.h.s. In (3.30), the following
conjugated strain and stress measures have been introduced:
r :¼ jF � S � F t
recalling the relationships (see Section 3.2) D ¼ F �t � _E � F �1; ~d :¼ F �t � _E � F t.
The writing of the second principle of thermodynamics will next allow to identify the irreversible forces

tied to growth.
4. Second principle and driving forces for growth

The local form of the second principle of the thermodynamics for an open continuous system (control
volume fixed in space) has been obtained in the Appendix 3, see also Munster (1966):
r : D� r : DR � Jk � rlk þ AkRk þ Jk � F k P 0 ð4:1Þ
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with DR the reversible part of D, Ak the chemical affinity (conjugated to the velocity Rk of the kth chemical
reaction), and Fk the force vector dual to the heat diffusion flux Jk. Inequality (4.1) expresses the positivity
of the internal entropy production, accounting for diffusion of mass (the last term on the l.h.s.), chemical
reactions (the fourth term), the non-uniformity of the intensive parameters (here the chemical potential),
and the mechanical dissipation (the two first terms).

An expression of the reversible flux Je
k versus the normal growth velocity is given by
Je
k ¼

qk

Mk
V N
with qk
Mk

the number of moles of the k-species per unit volume. Considering a growing germ, volumic and
surface chemical potentials lV (respectively lS) can be defined from the partial derivatives of wV and wS

versus the volumic and surface densities, respectively, qV and qS :
lV :¼ owV

oqV
; lS :¼ owS

oqS
A global form of Clausius–Duhem inequality is next obtained, transforming the mechanical dissipation into
the difference of (minus) the power of internal forces and the reversible mechanical power
/int ¼ �pi þ pRi ð4:2Þ

The reversible part of the power of internal forces is next identified: it is assumed that the terms involving

the growth velocity field, arising from the change of domain tied to growth, are irreversible contributions to
the total mechanical power of internal forces. Furthermore, the virtual velocity (in terms of its volumic,

surface and line contributions, condensed into the triplet ðV ; eV ;
eeV Þ) is decomposed into the sum of a

growth velocity vector (the triplet ðV g; eV g;
eeV gÞ, using the self-explanatory index �g�), and a virtual accom-

modation velocity vector (the triplet ðV a; eV a;
eeV aÞ, using the self-explanatory index �a�)
ðV ; eV ;
eeV Þ ¼ ðV g; eV g;

eeV gÞ þ ðV a; eV a;
eeV aÞ
It is clear that the growth and accommodation vectors defined by this decomposition do not (in general)
define compatible (globally integrable) displacement fields.

Thus, considering the decomposition of the total velocity (3.5), the surface and line contributions in the

previous decomposition that express as linear forms of the growth velocities eV g and
eeV g, respectively, are

irreversible contributions to pi. Accordingly, considering the decomposition of the total deformation rate,
viz D = Dg + Da, with Da considered as being reversible, and the equivalent decomposition of the surface
deformation rate ~d
~d ¼ ~d
g
þ ~d

a

with ~d
g
:¼ F �t

g
� _E

g
� F t

g
the irreversible surface growth rate deformation tensor, and ~d

a
an additional con-

tribution due to accommodation of growth, one identifies the reversible internal power
pRi :¼ �
Z

Xg

r : D
a
dxg �

Z
Sg

~r

: ~d
a
drg �

Z
Xg

jðwV
;X Þ

t � V a dxg þ
Z

Sg

eF IR � eV a drg �
Z

oSg

eeF IR

:
eeV a � ~tg dlg ð4:3Þ
thus giving the mechanical dissipation
/int ¼
Z

Xg

F IR:V g dxg þ
Z

Sg

eF IR
:eV g drg þ

Z
oSg

eeF IR

:
eeV g � etg dlg ð4:4Þ
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with F IR ¼ jðwV
;X Þ

t � divr the irreversible volumic driving force for growth,
eF IR
:¼ jsL:P � ðwS

;nÞ � jsðwS
;xÞ � ðrSw

SÞ þ jJ sL � P � ðF � NgÞ � rs � jJ sw
Sðng � NgÞ

t� �
þrsðjswSÞ þ r � ng � divS~r
the irreversible surface growth driving force, and
eeF IR

:¼ ð1þ jsÞwSI þ jJ sðng � NgÞ
t þ ~r
the irreversible line driving force for growth. Observe that the volumetric and surface growth driving forces
are of vectorial nature, while the line growth-driving force has been expressed in a tensorial form (via
the identity tensor). Decoupling the mechanical dissipation from the chemical dissipation term
/ch = �Jk Æ$lk + AkRk + Jk ÆFk, further gives the inequality
/int P 0 ð4:5Þ

Taking for granted the fact that the continuum tissue behaves as a generalized standard material (Mau-

gin, 1992), inequality (4.5) is satisfied provided a pseudo-potential of dissipation /� ¼ /�ðF IR; eF IR
;
eeF IR

Þ ex-
ists, such that the time rates in (4.4) derive from it according to the normality relations
V g ¼ /�
;F IR ; eV g ¼ /�

;eF IR ;
eeV g ¼ /�

;~~F
IR ð4:6Þ
The set of relations (4.6) define the evolution laws for the set of internal variables ðV g; eV g;
eeV gÞ; they have

to be completed by the constitutive law of the tissue, that relates the lagrangian stress S to the (elastic) part
of the accommodation lagrangian strain Ea (in both its volumetric and surface realization): this can be
achieved by the setting up of the volumic and surface potentials wV and wS, recalling the relationships
S :¼ wV

;E;
eS :¼ wS

;eE .

5. Accommodation of the growth and kinematic compatibility

While preserving the uniform character of the material body, the growth does in general not generate an
integrable global displacement field, thus it needs an additional deformation (of elastic or inelastic nature).
Physically, the growth �strain� (rather transformation) Fg is the strain that would be observed at a point of
the tissue if it could be insulated from the surrounding tissue during its growth under zero stress; such iso-
lated elements of matter do not fit together into the whole body when fully grown, thus a residual stress
field will be generated in order to maintain the kinematic integrity of the continuous body. The compati-
bility problem and the genesis of residual stresses was tackled for instance in Skalak et al. (1996), the
authors rather focusing on the integrability conditions of the displacement field from an assumed growth
strain, in both small and large transformations, however not trying to find explicitly the form of the accom-
modation tensor for incompatible growth situations.

The kinematic compatibility in general is the cornerstone of Beltrami resolution method in elasticity,
whereby the stress tensor is chosen as the primary unknown. We here focus on the expression and satisfac-
tion of the compatibility condition within a large transformation context. A criterion for the kinematic
compatibility condition within a large transformations framework is first enunciated, based on consider-
ations that pertain to the differential geometry of kinematics. The curvilinear coordinates lines defined
by the equations XI = Cte, I = 1, 2, 3, in the Lagrange configuration X0g, become new coordinate-lines
xi = Cte, i = 1, 2, 3, in the Euler configuration Xg. The tangent vectors to these lines are the basis vectors
(ei)i, that sustain a non-Euclidean space, having the metric tensor components gij = ei Æej. Similarly, the
components of the metric tensor in the Lagrange configuration are the scalar products of the lagrangian
base vectors, GIJ = EI ÆEJ.
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For materially simple materials in the sense of Noll, the motion is described by the linear tangent appli-
cation F, mapping the tangent spaces at homologous points in X0g and Xg. Since the tangent space to a
differentiable manifold is Euclidean (in the present case the manifold associated to the curvilinear coordi-
nates xi(XJ, t)), the metric of the tangent space TM at point M 2 Xg, is given by the expression
ds2 ¼ ds20 þ 2EIJ ðX ÞdX I dX J . This further leads to the vanishing of the fourth order Riemann–Christoffel
curvature tensor, which constitutes the kinematic compatibility condition in a large transformation context,
viz
Rl
imj ¼

oCl
ij

oum
þ Ck

ijC
l
mk �

oCl
mj

oui
� Ck

mjC
l
ik ¼ 0 ð5:1Þ
with {ui}i the set of curvilinear coordinates attached to the manifold Xg.
The compatibility of growth can be stated as the following problem: for a given assumed state of the

growth, defined at any instant t by the tensorial growth field Fg(X, t), find the tensorial field Fa(xg, t) such
that the growth state at the same instant t is compatible, i.e. condition (5.1) is satisfied. The general situ-
ation is that of a heterogeneous growth, whereby the material points do not attain the same state of growth
at the same time. The growth may in general be influenced by mechanical factors, such as the local state of
stress (residual or actual), and the fluxes of the different chemical species. We here assume that the growth
develops as a mechanism not being influenced by the current stress state, and consider the instantaneous
situation of a growth having developed into a portion of a cylindrical domain (Fig. 3); we deal here with
a frozen time t0 that shall not appear explicitly in the subsequent coordinate transformations. The material
point in the initial configuration is assigned the coordinates X = (R,Rh,Z), each being homogenous to a
length; the coordinates of the material points in the intermediate configuration at the frozen time t0 are
given by xg = (q,qu,n).

The growth model then expresses as the following relationship between both coordinate systems:
q ¼ f ðRÞ
u ¼ KhðRÞh
n ¼ Z

�������

whereby the setting up of the functions f(R) and Kh(R) prescribes the growth law along the cylinder radius
and in the angular direction, respectively; the angular function Kh(R) has been assumed to depend upon the
sole radial variable (and not upon the angle h), which means that the growth is homogeneous in the ortho-
radial direction. The growth displacement vector is then evaluated as the difference between both position
fields, as
Ug ¼ xg � X 

q � R

qu � Rh

0

0B@
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Fig. 3. Cylindrical growth of a continuum biological tissue.
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according to previous positions mapping. The growth tensor is then defined as
F
g
:¼ I þrXUg
resulting in the following expression
F
g
¼

df ðRÞ
dR

0 0

0
d

dR
ðqKhðRÞÞ 0

0 0 1

0BBBB@
1CCCCA ð5:2Þ
The accommodation of growth is then modeled by the relationship between the coordinates systems in the
intermediate and final configurations, viz
r ¼ rðqÞ
w ¼ ghðqÞu
z ¼ en

�������

with e a constant coefficient, corresponding to a plane strain deformation state. Accordingly, the accommo-
dation tensor expresses (in a two-dimensional representation: according to the invariance with respect to
translations in the directions of the axis of the cylinder, one focuses on a planar section of the cylinder) as
F
a
¼

drðqÞ
dq

0

0
d

dq
ðrðqÞghðqÞÞ

0BB@
1CCA ð5:3Þ
The product of the growth and accommodation tensors is then
F
eg
¼

drðqÞ
dR

0

0
d

dR
ðqKhðRÞÞ

d

dq
ðrðqÞghðqÞÞ

0BB@
1CCA
Remark 4. We follow in this example the presentation of the kinematics of growth given in Rodriguez
et al. (1994). A mapping between the material point X in the initial configuration and its counterpart in Xg

(after growth) xg is set up, as
X 2 X0; t 2 Rþ7!xg :¼ X þ UgðX ; tÞ
with Ug(X, t) the growth vector field and t a time-like parameter. The vector field Ug(X, t) is in general non-
compatible at the macroscopic scale of the whole body, since a discontinuity or a superposition of material
may occur due to the growth: thus, the previous relation establishes xg as an anholomic vector field. How-
ever, since one can define the differential of the displacement between two non-holonomic coordinate sys-
tems, the variation of the position in Xg is given by
dxg ¼ F
g
� dX
introducing thereby the growth transformation gradient Fg. Although the coinage displacement cannot be
attributed to the previous multivalued function Ug(X, t), it serves as a convenient (and intermediate) object
to ascribe the growth kinematics.
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Adopting this two-dimensional representation in the remaining of this paragraph, the transport of the
tangent vectors to the initial configuration (eR,eh) then defines the tangent vectors on the actual
configuration:
f
1
¼ dr

dR
eR; f

2
¼ d

dR
ðqKhðRÞÞ

d

dq
ðrðqÞghðqÞÞeh
The Christoffel symbols, projections of the derivatives of these tangent vectors (with respect to the actual
coordinates) onto the actual basis vectors (f1, f2), are next obtained as
C1
11 ¼

of
1

or
� f

1
¼ d2r

dR2
; C1

12 ¼
of

1

ow
� f

1
¼ 0; C2

11 ¼
of

1

or
� f

2
¼ 0; C1

21 ¼
of

2

or
� f

1
¼ 0;

C2
12 ¼

of
1

ow
� f

2
¼ dr

dR
d

dR
ðqKhÞ

d2

dR2
ðqKhÞ

d

dq
ðrghÞ; C1

22 ¼
of

2

ow
� f

1
¼ � 1

ghKh

d

dR
ðqKhÞ

d

dq
ðrghÞ

dr
dR

;

C2
21 ¼

of
2

or
� f

2
¼ dR

dr
d

dR
ðqKhÞ

d2

dR2
ðqKhÞ

d

dq
ðrghÞ

� �2

; C2
22 ¼

of
2

ow
� f

2
¼ 0
Introducing these expressions into the differential equations (particularization of (5.1)) that express the van-
ishing of the fourth order curvature tensor, viz
oC2
21

or
¼ C1

11C
2
21 � C2

21C
2
1;

oC1
22

or
¼ C2

12C
1
22 � C1

22C
1
11
leads to the two differential equations
o

or
dR
dr

dðqKhÞ
dR

d2ðqKhÞ
dR2

d

dq
ðrghÞ

� �2
" #

¼ dR
dr

dðqKhÞ
dR

d2ðqKhÞ
d2R

d2r

dR2
� dr
dR

d

dR
ðqKhÞ

d

dq
ðrghÞ

� �
o

or
� 1

ghKh

d

dR
ðqKhÞ

d

dq
ðrghÞ

dr
dR

� �
¼ � 1

ghKh

d

dR
ðqKhÞ

d

dq
ðrghÞ

dr
dR

� �
dr
dR

d

dR
ðqKhÞ

d

dq
ðrghÞ �

d2r

dR2

� �
ð5:4a; bÞ
We shall evidence analytical and numerical solutions of these two conditions, making simplifying assump-
tions of a mathematical and physical nature: it is immediate to observe that Eq. (5.4a) is automatically sat-
isfied when
d2

dR2
ðqKhÞ ¼ 0
thus leading to the expression
qðRÞ ¼ ARþ B
K0
considering that the angular growth is homogeneous for each radius, i.e. Kh(R) = K0.
One then searches for the combination of the functions r = r(q); w = gh(q)u that render the growth com-

patible, i.e. that satisfy (5.4b). The further choice of a constant angular accommodation, viz
ghðqÞ ¼ Cte ¼ g0



Fig. 4. Distribution of the actual radius r vs. the initial radius q. K0 ¼ 1:1. g0 ¼ 1=K0 � A ¼ 1. Initial conditions: rð0Þ ¼ 0; r 0(0) = 1.
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then renders the following differential equation, obtained after easy manipulations:
�2r00ðqÞ þ g0

A2

K0

r0ðqÞ4 � A2

K2
0

r0ðqÞ2r00ðqÞ ¼ 0 ð5:5Þ
noting therein r0ðqÞ :¼ dr
dq ; r

00ðqÞ :¼ d2r
dq2.

The second order differential equation (5.5) is solved with the specific boundary conditions r(0) = 0 and
r 0(0) = 1, considering as in Rodriguez et al. (1994) the relationship g0 = 1/K0.

• In the specific case A = 0, the previous Eq. (5.5) takes the simple form r00(q) = 0, thus the actual radius r
linearly varies versus q.

• In the general case (A non-nil), it is then seen (Fig. 4, considering the initial conditions r(0) = 0; r 0(0) = 1)
that the actual radius also nearly linearly varies versus q.

In order to conclude this section, note that the growth has been here envisaged—via the kinematic
description—as a diffuse mechanism, in fact a volumetric growth. An alternative would be a surface growth
process, occurring by the accretion of successive layers of newly added material. The description of surface
growth needs however a specific treatment, that lies outside the scope of the present contribution. In gen-
eral, one is faced with the more involved problem of a time dependent growth, whereby the rate of the
growth tensor is related to the actual stress by a specific constitutive law: at each instant, one has to actu-
alize the spatial distribution of the growth tensor, an then to solve the equilibrium equations in terms of the
dependence T(Fa).

Remark 5. The analysis of growth incompatibilities points towards a geometrical viewpoint that considers
growth as the propagation of defects in the material manifold of the growing body. This viewpoint exploits
the fruitful synergy between the continuum theory and the differential geometry, whereby the issue of the
existence of a global holonomic configuration (associated to the existence of a global compatible position
vector field) is resolved in terms of two central quantities of differential geometry, namely the Cartan
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torsion and the Riemann curvature tensor, see the pioneering works of Kondo (1952), Nye (1953) and
Kröner (1960), and the more recent contribution of Steinmann (1996).
6. Conclusion and perspectives

A mechanical model for tissue growth has been elaborated at the mesoscopic scale of so-called tissue
elements, considered as elementary representative volume elements, exchanging work and matter with the
surrounding. The change of configuration due to growth is accounted for by a variation of the domain
occupied by a tissue element under growth. The kinematics of the growth has been modeled by a growth
transformation tensor, which is accompanied by an accommodation tensor that restores the integrity of
the global displacement field. The energy of a growing tissue element exchanging and receiving mass both
on its surface and in the bulk from transport phenomena and chemical reactions has been expressed,
starting from a volume and a surface density, accounting for possible growth heterogeneities. The surface
potential has been assumed to depend upon the normal to the growing surface, the total lagrangian strain,
and the surface growth transformation tensor; it expresses the surface effects, which can represent an
important contribution to the total energy of the growth, especially at small sizes (of the order of the
micron and less).

The balance of momentum has been accordingly expressed in weak form, as a result of the vanishing of
the gateaux derivative of the total potential energy of the growing germ, accounting for the domain
variation (volume, surface and line variations) due to growth. The strong form of the principle of virtual
power expressed in static case results in the equilibrium equations, and the associated surface and line
(the growing surface of the tissue element is assumed to be non-closed, thus it has a line boundary)
boundary conditions.

Considering the growth as being fully irreversible, the writing of the second principle of thermodynamics
has further evidenced the volumetric, surface and line thermodynamic forces that trigger the growth.

As an important aspect of growth per se, the writing of the large strains kinematic compatibility condi-
tion as the vanishing of the fourth-order Riemann curvature tensors has provided an analytical solution for
the accommodation tensor in the case of a radial growth, in the form of two possible families of solutions.
It is clear in a general situation of heterogeneous growth that the set of mechanical balance equations have
to be combined with both the constitutive equation of the solid growing material and with the transport
equations. The numerical simulation of tissue growth is postponed to the second part of this contribution.

In biological systems, the search for a goal function of a living organism is one of the key points in the
understanding and modeling of these systems (Wilhelm and Brüggemann, 2000). It is thought that the
growth and evolution follow some organization principles regarding both the spatial and the temporal
dimensions: we herewith envision the flow of metabolic processes as occurring within a structured well-cho-
sen space–time manifold. The search for new variational principles that shall serve as goal functions is from
our point of view an important challenge susceptible to bring a new vision of morphogenesis and evolution
for biological tissues under growth.
Appendix 1. Elements of differential geometry of surfaces

The operator divS in the equality (3.11) denotes the surface divergence (Petryk and Mroz, 1986), defined
from the projection of the gradient by the tensorial operator
P :¼ I � ng � ng
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with P 2 Lðn?g ;R3Þ called the surface projection operator, such that one formally has $S :¼ P.$, which de-
fines the surface gradient in operator form. The surface divergence is then formally defined as the following
equality between operators:
divSð�Þ :¼ TrðrSð�ÞÞ
Applied to the velocity field V, this definition yields
divSV ¼ TrðrSV Þ

A superficial second order tensor field A on the surface Sg is a linear transformation from the tangent space
of Sg to R3. An extension of the domain of A to the whole space is made, requiring that A annihilates
vectors normal to the tangent plane, i.e. A Æng = 0. Tensor A then admits a unique decomposition into
tangential and normal components Atan and a, viz
A ¼ A
tan

þ ng � a
The surface divergence of a superficial tensor field is then defined by
b � divSA ¼ divSðAt � bÞ
for any constant vector b.
The velocity field is decomposed as the sum of its projections
V ¼ V T þ V N � ng;
with VT the tangential part of V, i.e. its projection onto the tangent plane to Sg, and VN :¼ V Æng the normal
component of V, i.e. the projection of V onto the normal to the tangent plane.

According to this, one can explicit the scalar product
rng � V ¼ rng � V T ¼ rSng � V T þ ðng � ngÞ � rng � V T ¼ rSng � V T
The material derivative of the normal to the evolving surface Sg is then obtained as
_ng ¼
ong
ot

þrng:V ¼
ong
ot

þ L
g
� V T ðA1:1Þ
The tensor Lg :¼ $Sng is the surface gradient of the normal ng, representing the curvature tensor of the sur-
face Sg.

According to these definitions, the so-called surface transformation gradient
eF ¼ F � P ¼ F � ðI � ng � ngÞ
has the material derivative
_eF ¼ _F � _F :ðng � ngÞ � ðF � L � V T Þ � ng � ðF � ngÞ � ðL
g
� V T Þ ðA1:2Þ
or equivalently in component form:
_eF ij ¼ _F ij � _F ikngkngj � F ikngjLkpV T
p � F ikngkLgjpV T

p

A more detailed account regarding surface deformation gradients is given in Petryk and Mroz (1986) and
Gurtin (1995). The surface deformation gradient eF :¼ P � F has the property to carry line elements attached
to the initial configuration into material line elements of the surface Sg; otherwise said, the pull-back of the
line elements attached to Sg defines material line elements in the initial configuration X0g, forming a patch
of tangent planes, the collection of which defines the pull-back of Sg into X0g.
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The variation of the tangent vector sg = F Æs0g (material vector) is evaluated from the orthogonality
property sg Æng = 0, thus giving
dsg ¼ �ðsg � dngÞng ¼ �ðsg � L � P � vÞng ðA1:3Þ
The following divergence theorems are further involved:
Z
Xg

A : dF dxg ¼ �
Z

Xg

divgðAÞ � dU dxg þ
Z

Sg

ntg � A � dU drg
Note that in this transformation, there is no complementary term on the surface oXgnSg, since the
support of d eU is restricted to Sg. One further writes a similar formula for the transformation of the surface
integral:
Z

Sg

eB : deF drg ¼ �
Z

Sg

divSðeBÞ � d eU drg þ
Z

oSg

ntg � eB � d eeU � tg dlg ðA1:4Þ
The two previous equalities are valid for any second order tensors A (having its range in Xg) and eB (surface
tensor having its range on Sg).

The variation of the normal vector is, according to (3.14), neglecting the explicit time dependence of ng:
dng ¼ L
g
� dUT ¼ L

g
� P � dU ðA1:5Þ
Furthermore, the counterpart of (3.15) in terms of variations is
deF ij ¼ dF ij � dF ikngkngj � F ikngjLkpdUT
p � F ikngkLjpdUT

p ðA1:6Þ
The variations of the volume and surface Jacobian express as
dðjgÞ ¼ � 1

J 2
g

� JgdivðdUÞ ¼ �jgdivðdUÞ; dðjsgÞ ¼ �jsgdðJ sgÞ; with J sgðng � F g
� NgÞ ¼ Jg;
thus giving after an elementary calculation
dðJ sgÞ ¼ J sgrX ðdUÞ � jgJ
2
sgðF g

� NgÞ
t � L

g
� P � dU � jgJ

2
sgng � rX ðdUÞ � Ng ðA1:7Þ
We shall further make use the surface divergence theorem, with two variants:

(i) considering a surface vector field p (i.e. a vector field attached to the tangent plane of the surface Sg)
and a surface tensor c, one hasZ Z
oSg

c � p � tg dlg ¼
Sg

ðc : rSp þ p � divScÞdrg
(ii) for a scalar field q and a superficial vector field d, one writes
Z
oSg

qd � tg dlg ¼
Z

Sg

ðd:rSqþ qdivSdÞdrg
Appendix 2. Variation of the total energy (Eulerian form)

Starting from the expression of the total mechanical energy of the growing tissue element
E :¼
Z

Xg

jwVðxg;EÞdxg þ
Z

Sgt

jsw
Sð~xg; ng; eEÞdrg
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its domain derivative is easily evaluated as the following lengthy expression:
dE
dt

¼
Z

Xg

jwV
;xV dxþ

Z
Xg

jwV
;E

: _Edxg þ �
Z

Xg

jwVdivV dxg �
Z

Xg

rX ðjwVÞt � V dxg þ
Z

Sgt

jwVV � ng drg

( )

þ
Z

Sgt

js½wS
;x � eV � ðwS

;nÞ
t � L � P � eV þ eS :

_eE
drg þ
Z

Sgt

wS _�js drg þ
Z

Sgt

jsw
SdivSV drg ðA2:1Þ
The sum of the three terms under the accolade vanish, in view of the equality
�
Z

Xg

jwVdivV dxg ¼
Z

Xg

rX ðjwVÞt � V dxg �
Z

Sgt

jwVV � ng drg
One further transforms the homologous surface contribution
Z
Sg

jsw
SdivSV drg ¼ �

Z
Sg

eV � rSðjswSÞdrg þ
Z

oSg

jsw
S eeV � tg dlg ðA2:2Þ
Adopting a point of view similar to plasticity (Khan and Huang, 1995), the following identity is easily
obtained
Z

Xg

jS : _Edxg ¼
Z

Xg

r : Ddxg ðA2:3Þ
with r = jF ÆS ÆFt and furthermore, the term
R
Sgt

wS _�js drg is transformed into
Z
Sg

wS _�js drg ¼
Z

Sg

½eV � rSw
S � jJ sðF � NgÞ

t � L � P � eV þrS � ðjJ sw
Sðng � NgÞ

tÞ � eV 
drg

þ
Z

oSg

wSV � tg dlg þ
Z

oSg

jJ sðng � NgÞ
t � V � tg dlg ðA2:4Þ
Gathering the expressions the above gives the derivative
dE
dt

¼
Z

Xg

r : Ddxg þ
Z

Xg

jðwV
;X Þ

t � V dxg þ
Z

Sg

er : ed dxg � Z
Sg

jsðwS
;nÞ

t � L � P � jsðwS
;xÞ

t � ðrSw
SÞt

n
þjJ sðF � NgÞ

t � L � P �rs � ½jJ sw
Sðng � NgÞ

t
 þ rsðjswSÞ
o
� eV drg

þ
Z

oSg

ð1þ jsÞwS eeV � tg dlg þ
Z

oSg

jJ sðng � NgÞ
t � eeV � tg dlg ðA2:5Þ
expressed in Eulerian format.
Appendix 3. Thermodynamics of open systems

For material systems that exchange work and mass with their surrounding, the material derivative of the
volumic internal energy u expresses as Munster (1966)
_u ¼ r � ðJqÞ � pi þ Jk � F k ðA3:1Þ
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with Jq the heat diffusion flux (that shall obey a constitutive relationship vs. the temperature T),
pi = �r:D(v) the volumetric density of the power of internal forces (expressed here choosing an Eulerian
description, with r the Cauchy stress), Jk the diffusion flux of the k-specie, and Fk an external force acting
on the k-specie.

The entropy balance expresses in terms of the material derivative of the volumic density of entropy s as
T _s ¼ _u� r : DR � lkqk _ck ðA3:2Þ
considering k = 1, . . . ,N chemical species (otherwise called constituents) having each the chemical potential
lk and the concentration ck ¼ qk

q being the ratio of mass densities of the kth constituent to the total density.
The symmetric part of the velocity gradient D is being additively decomposed into a reversible contribution
DR and an irreversible contribution DIR.

The barycentric balance of mass is (for the kth constituent)
q _ck ¼ �r � ðJkÞ þ tkmRm ðA3:3Þ

with Rj the velocity of the chemical reaction for the jth constituent (a scalar quantity). The (vectorial) flux
of mass Jk expresses vs. the local velocity vk, the barycentric velocity v and the mass density qk as
Jk ¼ qkðvk � vÞ

thus the exchange term on the right-hand side of (A2.3) further expresses in the balance law
oqk

ot
¼ �r � ðqkvÞ � r � ðJkÞ ¼ �r � ðUmk

Þ

The flux Umk
decomposes into a convection flux and a diffusion flux Jk. Introducing (A3.3) and (A3.1) into

(A3.2) leads to
qT _s ¼ r � ðJqÞ � pi þ Jk � F k � r : DR þ lkr � ðJkÞ � litijRj ðA3:4Þ
We further transform in (A3.4) all terms having divergence multiplicative factors, using the general equality
lkr � ðJkÞ ¼ r � ðlkJ kÞ � Jk � rlk
thus giving
qT _s ¼ r � ðJqÞ � pi � r : DR þr � ðlkJ kÞ � Jk � rlk þ AkRk þ Jk � F k
with Ak :¼ tikli the chemical affinities, introduced by De Donder (Munster, 1966). The comparison with the
conservation law of the entropy,
_s ¼ r � ðJ sÞ þ rs
introducing the entropy flux Js (exchange of entropy with the environment) and the source of entropy rs
(irreversible contribution), gives by identification (all terms having a divergential form are exchange
contributions):
qTrs ¼ �pi � r : DR � Jk � rlk þ AkRk þ Jk � F k ðA3:51Þ

J s ¼ Jq þ lkJ k ðA3:52Þ
The positivity of the entropy source rs ¼ _si implies
r : D� r : DR � Jk � rlk þ AkRk þ Jk � F k ¼ r : DIR � Jk � rlk þ AkRk þ Jk � F k P 0 ðA3:6Þ



4336 J.-F. Ganghoffer, B. Haussy / International Journal of Solids and Structures 42 (2005) 4311–4337
The entropy source results accordingly from the non-uniformity of the intensive parameters, the conduction
of heat (with here the specific case of a uniform temperature) and diffusion of mass, the dissipation of
mechanical energy (expressed by the first term in the right hand side of (A3.6)) and the occurrence of chem-
ical reactions.

An alternative expression of the dissipation is obtained by considering the general form of the balance of
energy and entropy (u and s, respectively, denote the densities of internal energy and entropy, per unit
mass):
q _u ¼ �r � Jq � pi þ Jk � F k; q_s ¼ �r � J s þ rs
with J s :¼ 1
T ðJq � liJ iÞ the total entropy flux. We then immediately obtain
q _w ¼ qs _T �r � Jq þ Tr � J s þ Jk � F k � pi � rs
with w :¼ u�Ts the free energy. For an isothermal process, the positivity of the entropy production rs in
previous inequality then expresses as
q _w 6 �pi þ Jk � F k �r � ðliJ iÞ ðA3:7Þ

The principle of virtual power, dK

dt ¼ Pe þ P i, leads to the global form of previous inequality:
dK
dt

þ
Z

X
q _wdx 6 Pe þ Jk � F k þ Um ðA3:8Þ
with K the kinetic energy, and Um :¼ �
R
oXliJ i � ndr the flux of mass through the boundary of X. Previous

inequality traduces the fact that the flux of mechanical work and mass increases the kinetic and internal free
energy of the system, the difference being dissipated.
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